Multipurpose Charging Schedule Optimization Method for Electric Buses: Evaluation Using Real City Data

نویسندگان

چکیده

The use of electric vehicles (EVs) and photovoltaics (PV) is increasing worldwide. Transportation networks require the effective renewable energy (RE) for EVs, while power local consumption PV energy, mainly at initiative governments. Although many previous studies have addressed these requirements using private EVs as mobile storage resources, their uncertainty uncontrollability are major issues. Therefore, our focused on buses having high controllability certainty, developed evaluated two independent minimization problems kilowatts (KW) kilowatt-hours (KWH) surplus RE, a charging schedule optimization method mixed integer linear programming. However, there were still technical issues regarding simultaneous feasibility KW KWH minimization. This study aims to extend generalize PV-derived reverse flow (RPF). With this multiobjective optimization, peak-cut RPF improves hosting capacity expands amount connectable RE promotes realization decarbonized public transportation. Through simulations detailed actual bus operation data real city, simultaneously optimizing relationship between indicators number EV chargers confirmed. optimized 17 achieved maximum 211.4 kW 1318.4 kWh RE-RPF absorption, in which reduced CO2 emissions by 495.7 kg-CO2/day.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of battery requirements for hybrid and electric city buses

This paper presents an evaluation of battery requirements for hybrid and electric city buses. Technical specifications of recently developed lithium based batteries and vehicle simulation results are used as basis for the evaluation. The battery requirements are evaluated in terms of power and energy capacity, calendar and cycle life as well as costs. Conventional diesel, parallel and series hy...

متن کامل

Learning to schedule electric vehicle charging given individual customer preferences

Electric Vehicles (EVs) and their integration in the smart grid are challenges that sustainable societies have to tackle. Large scale uncoordinated EV charging increases peak demand and creates the need for extra grid infrastructure to be covered effectively, which is a costly solution. We propose a decentralized charging strategy for EV customers that offers savings for the individual adopters...

متن کامل

metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)

هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...

pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)

فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...

15 صفحه اول

Photovoltaic Based Electric Vehicle Charging Optimization

Electric vehicles (EVs) charging algorithms considering a photovoltaic (PV) system have been studied in this paper. The power needed to charge the EVs comes from gridconnected photovoltaic generation or the utility. This work includes the issues such as how to maximize photovoltaic generated power and reduce energy cost of EVs charging, that is important for the integration of efficient EVs cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2022

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3177618